Large positive in-plane magnetoresistance induced by localized states at nanodomain boundaries in graphene
نویسندگان
چکیده
Graphene supports long spin lifetimes and long diffusion lengths at room temperature, making it highly promising for spintronics. However, making graphene magnetic remains a principal challenge despite the many proposed solutions. Among these, graphene with zig-zag edges and ripples are the most promising candidates, as zig-zag edges are predicted to host spin-polarized electronic states, and spin-orbit coupling can be induced by ripples. Here we investigate the magnetoresistance of graphene grown on technologically relevant SiC/Si(001) wafers, where inherent nanodomain boundaries sandwich zig-zag structures between adjacent ripples of large curvature. Localized states at the nanodomain boundaries result in an unprecedented positive in-plane magnetoresistance with a strong temperature dependence. Our work may offer a tantalizing way to add the spin degree of freedom to graphene.
منابع مشابه
Electric-Field-Induced Triplet to Singlet Transition in Size-2 Trigonal Zigzag Graphene Nanoflake
Using Hartree-Fock Su-Sheriffer-Heeger (HF-SSH) model, we have studied the dependence of the energies of the ground (magnetic triplet state) and the first exited (nonmagnetic singlet state) states of the size-2 trigonal zigzag graphene nanoflake (size-2 NF) on the intensity of an external in plane static electric field at zero temperature. We identify a transition from the magnetic triplet stat...
متن کاملVery large magnetoresistance in graphene nanoribbons
Graphene has unique electronic properties, and graphene nanoribbons are of particular interest because they exhibit a conduction bandgap that arises due to size confinement and edge effects. Theoretical studies have suggested that graphene nanoribbons could have interesting magneto-electronic properties, with a very large predicted magnetoresistance. Here, we report the experimental observation...
متن کاملCurrent-Perpendicular-to-Plane Magnetoresistance in Chemical Vapor Deposition-Grown Multilayer Graphene
Current-perpendicular-to-plane (CPP) magnetoresistance (MR) effects are often exploited in various state-of-the-art magnetic field sensing and data storage technologies. Most of the CPP-MR devices are artificial layered structures of ferromagnets and non-magnets, and in these devices, MR manifests, due to spin-dependent carrier transmission through the constituent layers. In this work, we explo...
متن کاملExtremely large magnetoresistance in few-layer graphene/boron–nitride heterostructures
Understanding magnetoresistance, the change in electrical resistance under an external magnetic field, at the atomic level is of great interest both fundamentally and technologically. Graphene and other two-dimensional layered materials provide an unprecedented opportunity to explore magnetoresistance at its nascent stage of structural formation. Here we report an extremely large local magnetor...
متن کاملLarge positive magnetoresistance of insulating organic crystals in the non-ohmic region.
We report a large positive magnetoresistance ratio in insulating organic crystals theta-(ET)(2)CsZn(SCN)(4) at low temperatures at which they exhibit highly nonlinear current-voltage characteristics. Despite the nonlinearity, the magnetoresistance ratio is independent of the applied voltage. The magnetoresistance ratio depends little on the magnetic field direction and is described by a simple ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 8 شماره
صفحات -
تاریخ انتشار 2017